
Basic Game #2 GDD-Lite: The Ring Jump
Today, we’ll be making a game where the “player” is an actual 2D character model (wowee!) that will
move on the X axis across a plane with a cliff at the end. Pressing Spacebar makes your litleman jump,
following the trajectory you were moving. Your litleman’s goal? Jump through a ring down past the cliff!

Breaking it down
While making a coherent game (even a small one) seems daun�ng, they’re usually just comprised of four
parts: Objects; Mechanics; Physics; and Goals (yes, I will reuse this sec�on in every GDD-Lite).

Objects:
Each individual physical en�ty on-screen at any point. These require references to one another so that
when they interact, the game calls a mechanic. They also usually require collision shapes, which are how
the game knows that objects are interac�ng with one another. But some elements, like UI elements, are
designed not to have a collision shape so that objects just pass beneath them harmlessly.

• Character
• Ground (physical terrain)
• Ring
• UI Message

Mechanics:
Each individual interac�on between objects whether it happens instantaneously; a�er a �mer finishes;
or via a physics calcula�on. These are usually the most memorable parts of a game.

• Pressing Le�/Right (or A/D) moves the character le� and right
• Pressing Spacebar makes the character jump

o Jumping prevents the character from jumping while in the air
o Once the character lands on the ground, they can jump again

• Leaving the screen at the botom results in the MESSAGE being revealed
o If the character successfully fell through the ring, you get a happy SOUND and the

MESSAGE reveals that you won
o If the character falls outside the ring, the lost MESSAGE and SOUND show up

Physics:
Each calcula�on that must be made to determine the speed, direc�on, and/or gravity of an object. These
are typically calculated ahead of �me and are called when a mechanic occurs, like jumping. However,
some physics are also calculated only after or during a mechanic call (like a Pong ball ge�ng faster over
�me or changing direc�ons).

• Character moving on the X axis (le� or right)
• Character jumping ver�cally

o Character falling ver�cally
• Inability for Character to travel through the ground (physical terrain)

Goals:

The interac�on that results in either a win condi�on or at least a step towards it. This is also the result of
a mechanic occurring, but instead of causing something else to happen, it’s usually the natural
conclusion of a string of mechanical interac�ons when the player performs them correctly.

• Fall through the ring
o Receive a good MESSAGE and SOUND

Now for the Coding
Now it’s �me to go through each object, mechanic, physics, and goal to detail the general code structure
you might use in programming the game yourself! But this isn’t your normal tutorial; we’ll only be
supplying code words or snippets that are relevant to get you started!
Objects:

• Character – First, you’ll need to make a 2D BODY that can move on command.
o Atach a SPRITE to it;
o Create a HITBOX covering the SPRITE

• Ground (physical terrain) – You’ll need to make a STATIC 2D BODY and:
o Atach a SPRITE to it;
o Create a HITBOX covering the SPRITE
o The “Ground” will actually also be behind the player as a wall with the same proper�es

• Ring – You’ll need to make a STATIC 2D BODY
o Atach a SPRITE to it (this will actually be two atached sprites – more on that later);
o Create a HITBOX that’s smaller than the SPRITE

• Score UI (star�ng at 0) – You’ll just need to make a MESSAGE for this and place it center-screen

Mechanics:

• Press Pressing Le�/Right (or A/D) moves the character le� and right
o Call a SPRITE change during the PHYSICS PROCESS func�on

• Pressing spacebar jumps – You’ll need four main func�ons here:
o Bind a buton or key to start the PHYSICS func�on detailed below;
o Call a SPRITE change during the PHYSICS PROCESS func�on
o Add an IF func�on to s�pulate that if the Dart is moving, clicking does nothing, and if it’s

not moving, clicking calls the PHYSICS PROCESS func�on.
o A�er the character hits the Ground, they can jump again

• Falling through the ring and off-screen rewards you with a winner UI and SOUND
o We won’t actually do anything here for now!

Physics:

• Character moving le� and right
o You’ll need to add a PHYSICS PROCESS func�on that’s called on your A/D presses

 This func�on must STOP when the key is released
• Character moving ver�cally when ini�alizing the jump

o You’ll need to add a PHYSICS PROCESS func�on to the Dart that moves it along the X axis
at a constant speed;
 This will be used to avoid moving through physical terrain

 This will also be used to determine if the character passes through the ring
• Character stopping momentum when it hits physical terrain

o Your character’s PHYSICS PROCESS script will need a COLLISION variable to avoid passing
through physical terrain and to determine if it passes through the ring

o The PHYSICS PROCESS script must constantly check to see whether or not the character
has COLLISION with another object, and then it calls the appropriate func�on

Goals:

• Fall through the ring
o When falling through the ring, the character must pass on top of one SPRITE (the ring’s

back) and behind the other SPRITE (the ring’s front) This can be achieved by se�ng the
visual layer of all three sprites so they’re different or just reordering each NODE!

o You already have all the tools set up! You just need an IF func�on for whether the
character has COLLISION with the ring before hi�ng the botom of the stage!
 That needs to call your win/loss MESSAGE and SOUND

Anima�on:

The first GDD-Lite didn’t use any parts that required an anima�on. This �me, we’ll be using one to make
the character stand s�ll, walk, and jump. Now for this step, there are two main ways to do it: create an
ANIMATION TREE (handy feature in Godot) which lets you easily blend two anima�on loops together; or
simply calling the anima�on loop directly during certain mechanical or physics calls. We’ll use the second
one, since we don’t need anything fancy.

• The first thing you need is your SPRITE. This should be created as a SPRITE sheet (an image file
with each frame of a SPRITE’s anima�on in order, placed equidistant apart from one another)

• You need to make the anima�on in an ANIMATION PLAYER within the engine; or
o You need to create the anima�on loop itself manually (a hand-writen script that cycles

through each sprite sequen�ally) [not recommended]
• Then you just need to call that specific anima�on loop when the game state calls for it (a

character moving; a character jumping; a fireworks effect; a ball compressing as it bounces)
o You can call an h-flipped version of the anima�on, so you don’t have to make it twice!

• The trickiest part is making sure that your 2D BODY script always calls back to the default
stance/anima�on when other anima�ons aren’t happening (the idle anima�on!)

o This can be tricky because the code is picky and unless it’s writen just right, a
character’s walk anima�on to the right may end and the character will automa�cally
face le� for the idle anima�on!

• The anima�on calls from your 2D BODY script

Resources:

We’d hate to make you find your own resources, so here’s a handy zip file with the sprites and sounds
you’ll need!

Now you’ve made your game!

	Breaking it down
	Now for the Coding

