
Basic Game #1 GDD-Lite: Darts
Today, we’ll be making a game where the “player” is a horizontal dart that’s moving up and down on its
own. Clicking releases the dart which moves at a set speed toward a dartboard. Hi�ng the board with
the dart gives you a point and plays a small fanfare.

Breaking it down
While making a coherent game (even a small one) seems daun�ng, they’re usually just comprised of four
cons�tuent parts: Objects; Mechanics; Physics; and Goals.

Objects:
Each individual physical en�ty on-screen at any point. These require references to one another so that
when they interact, the game calls a mechanic. They also usually require collision shapes, which are how
the game knows that objects are interac�ng with one another. But some elements, like UI elements, are
designed not to have a collision shape so that objects just pass beneath them harmlessly.

• Dart
• Dartboard
• Score UI (star�ng at 0)
• Wall

Mechanics:
Each individual interac�on between objects whether it happens instantaneously, a�er a �mer finishes,
or via a physics calcula�on.

• Clicking throws the dart
o Throwing the dart prevents you from throwing an addi�onal dart
o A�er the dart hits the wall or the dartboard, it can be fired again

• Hi�ng the dartboard awards you a point
o Ge�ng a point plays a happy noise and makes the Score UI increase by 1

Physics:
Each calcula�on that must be made to determine the speed, direc�on, and/or gravity of an object. These
are typically calculated ahead of �me and are called when a mechanic occurs, like clicking to throw the
dart. However, some physics are also calculated only after/when a mechanic occurs (like a Pong ball
ge�ng faster over �me)

• Dart moving up and down
• Dart moving horizontally when thrown
• Dart stopping when it hits the board or the wall

Goals:
The interac�on that results in either a win condi�on or at least a step towards it. This is also the result of
a mechanic occurring, but instead of causing something else to happen, it’s usually the natural
conclusion of a string of mechanical interac�ons when the player performs them correctly.

• Hit the dartboard with the thrown dart
o Receive a point

Most games also include a loss state to contrast the goal, but we’ll get to that in another module!

Now for the Coding
Now it’s �me to go through each object, mechanic, physics, and goal to detail the general code structure
you might use in programming the game yourself! But this isn’t your normal tutorial; we’ll only be
supplying code snippets that are relevant to get you started!
Objects:

• Dart – First, you’ll need to make a 2D BODY that can move on command. Then you’ll have to:
o Atach a sprite to it;
o Create a hitbox for covering the sprite

• Dartboard – You’ll need to make a STATIC 2D BODY and:
o Atach a sprite to it;
o Atach a hitbox covering the sprite

• Score UI (star�ng at 0) – You’ll just need to make a MESSAGE for this and place it in a corner
• Wall – Repeat the process from the Dartboard

Mechanics:

• Clicking throws the Dart – You’ll need three main func�ons here:
o Bind a buton, key, or click to call the PHYSICS PROCESS func�on detailed below;
o Add an IF func�on to s�pulate that if the Dart has been thrown and is still moving,

clicking does nothing
o A�er the dart hits the wall or the dartboard, it can be fired again

• Hi�ng the dartboard awards you a point and makes the dart stop
o We won’t actually do anything here for now!

Physics:

• Dart moving up and down
o You’ll need to add a PHYSICS PROCESS func�on that occurs automa�cally when the game

starts
• Dart moving horizontally when thrown

o You’ll need to add a PHYSICS PROCESS func�on to the Dart that moves it along the X axis
at a constant speed;

o You’ll also need to ensure that there’s a COLLISION variable in the func�on
• Dart stopping when it hits the board or the wall

o Your Dart’s PHYSICS PROCESS script will need to constantly check to see whether or not
the Dart has collided with another object (either the Wall or the Dartboard) using the
PHYSICS PROCESS, stopping when the dart does collide with something

Goals:

• Hit the dartboard with the thrown dart
o You already have all the tools set up! You just need an IF func�on for when the Dart

collides with the Dartboard! That will make your Message counter go up by 1

Now you’ve made your game!

	Breaking it down
	Now for the Coding

